Date of Publication

1-1-1986

Document Type

Dissertation

Degree Name

Doctor of Philosophy (Ph.D.) in Environmental Sciences and Resources: Chemistry

Department

Environmental Science and Management

Language

English

Subjects

Polyazaindenes, Polyazabenzenes, Nitrogen -- Isotopes

DOI

10.15760/etd.218

Physical Description

3, vii, 126 leaves: ill. 28 cm.

Abstract

Beginning in the mid-1960's synthetic nucleoside derivatives of polyazaindolizines and polyazaindenes were studied for their anticancer activities. The most promising nucleosides for anticancer activity were pyrrolo-, imidazo-, and s-triazolo- pyrimidines and triazines. Syntheses of 1,2,4-triazolo 3,4c -1,2,4-triazine-7-oxide, 1,2,4-triazolo 3,4c pyrazine-7-oxide and 1,2,4-triazolo 2,3c pyrazine-7-oxide were achieved by the cyclization of the appropriate 3-hydrazinoazine N-oxide with diethoxymethyl acetate. When different one carbon cyclization agents react with the 3-hydrazinoazine-1-oxides they did not produce the expected polyazaindene-7-oxides. The reaction of formic acid with 3-hydrazino-1,2,4-triazine-1-oxide or 3-hydrazinopyrazine-1-oxide produced the 3-formylhydrazino derivatives. Similarly, the reactions of the 3-hydrazino -pyrazine-1-oxide and -triazine-1-oxide with benzaldehyde, acetic anhydride, or phenylisothiocyanate produced the 3-benzylideno, 3-acetyl, and 3-(4-phenylthiosemicarbizide) derivatives, respectively. The direct N-oxidation of imidazo 1,2a pyrazine with meta-chloroperbenzoic acid produced the imidazo 3,4c pyrazine-7-oxide. Proton nuclear magnetic resonance analyses of the polyazaindenes N-oxides has produced a set of shielding and deshielding parameters for ring protons. The mass spectral information obtained for the polyazaindene N-oxides suggests that the five membered ring of polyazaindene N-oxide has a decreased reactivity to electrophilic reagents when compared to the parent compound. The nitrogen-15 nuclear magnetic resonance spectra obtained for selected polyazaindenes were used to predict the percentage of contribution between two ground state resonance contributing structures. The nitrogen-15 nuclear magnetic resonance spectra of several substituted pyridine, pyrazine, pyrimidine and 1,2,4-triazine derivatives and their N-oxides were correlated with substituent contributions and ground state contributing structures. From this data, correlations between the nitrogen-15 chemical shifts and aromatic electron deficiency have been established.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Comments

Portland State University. Environmental Sciences and Resources Ph. D. Program.

Persistent Identifier

http://archives.pdx.edu/ds/psu/4390

Share

COinS