First Advisor

Andrew G. Fountain

Date of Publication

Summer 8-5-2015

Document Type

Thesis

Degree Name

Master of Science (M.S.) in Geology

Department

Geology

Language

English

Subjects

Glaciers -- Oregon -- Three Sisters -- Measurement -- 20th century, Glaciers -- Oregon -- Three Sisters -- Measurement -- 21st century, Glaciers -- Climatic factors -- Oregon -- Three Sisters

DOI

10.15760/etd.2445

Physical Description

1 online resource (viii, 144 pages)

Abstract

A glacier responds to changes in climate by subsequent retreat and advance as a result of changes in snow inputs and outputs. Understanding these changes is important because shrinking glaciers limit and diminish local water resources. They contribute to alpine runoff in the late-summer months by delaying the maximum runoff until late in the melt season. A comprehensive glacier and perennial snowfield inventory has not been completed for the Three Sisters in Central Oregon. Using aerial photography, Digital Elevation Models (DEMs), previous studies, and historical ground based photographs these glacier and perennial snowfields were defined and their surface area change was quantified along with surface area and volume change for the 15 named glaciers for multiple years. The glaciers and perennial snowfields totaled 9.03 ± 1.65 km2 in 1949 and decreased to 7.1 ± 1.16 km2 in 2003 giving a total loss of -1.914 ± 0.974 km2 ( 21%). The 15 named glaciers totaled 12.43 ± 0.417 km2 in ~1900 and decreased to 5.65 ± 0.135 km2 in 2003 giving a total loss of -6.70 ± 0.439 km2 (54%) with more loss occurring in the early part of the century. It's estimated that the 15 named glaciers lost roughly 61% of volume from 1900 to 2010. From 1957 to 2010 their surface's dropped in elevation on average by -8.9m, losing an estimated 71.96 x 106 ± 2.87 x 106 m3 (53%) in total volume, seen across accumulation and ablation zones, with more loss happening from 1957 to 1990. There was no relationship found between topography and area. A small correlation was found between slope and increased volume change. Debris cover on glacier surfaces has increased and showed a correlation between decreasing area loss (no correlation with volume changes).

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Persistent Identifier

http://archives.pdx.edu/ds/psu/15855

Share

COinS