First Advisor

Melanie Mitchell

Date of Publication

Spring 5-18-2016

Document Type

Thesis

Degree Name

Master of Science (M.S.) in Computer Science

Department

Computer Science

Language

English

Subjects

Computer vision, Pattern recognition systems, Image processing

DOI

10.15760/etd.2944

Physical Description

1 online resource (v, 38 pages)

Abstract

Object localization is the task of locating objects in an image, typically by finding bounding boxes that isolate those objects. Identifying objects in images that have not had regions of interest labeled by humans often requires object localization to be performed first. The sliding window method is a common naïve approach, wherein the image is covered with bounding boxes of different sizes that form windows in the image. An object classifier is then run on each of these windows to determine if each given window contains a given object. However, because object classification algorithms tend to be computationally expensive, it is helpful to have an effective filter to reduce the number of times those classifiers have to be run.

In this thesis I evaluate one promising approach to object localization: the objectness algorithm proposed by Alexe et al. Specifically, I verify the results given by Alexe et al., and further explore the weaknesses and strengths of their "objectness"

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Persistent Identifier

http://archives.pdx.edu/ds/psu/17526

Share

COinS