First Advisor

Larry W. Price

Term of Graduation

Summer 1987

Date of Publication

8-7-1987

Document Type

Thesis

Degree Name

Master of Science (M.S.) in Geography

Department

Geography

Language

English

Subjects

Rock glaciers -- Washington (State) -- Olympic Mountains

DOI

10.15760/etd.5440

Physical Description

1 online resource (3, ix, 126 pages)

Abstract

Rock glaciers are tongue-shaped or lobate masses of rock debris which occur below cliffs and talus in many alpine regions. They are best developed in continental alpine climates where it is cold enough to preserve a core or matrix of ice within the rock mass but insufficiently snowy to produce true glaciers. Previous reports have identified and briefly described several rock glaciers in the Olympic Mountains, Washington, but no detailed integrative study has been made regarding the geomorphic character, age, and distribution of these features.

The purpose of this study is two-fold. First, surface sediment fabric analysis and relative and absolute dating methods are used to determine the geomorphic character and age of Akela rock glacier. Secondly, the distribution of rock glaciers in the northeast Olympics is analyzed in terms of topoclimatic and geologic factors in order to understand the environmental conditions under which they formed. In addition, the distribution of rock glaciers is compared to that of past and present glaciers.

Radiocarbon dates indicate that Akela rock glacier formed within the past 10,000 years, most likely about 3,000 to 5,000 years ago. The rock glacier has clearly not been active for at least 200 to 300 years. Relative age data indicate that the surface of the rock glacier is variably-aged; boulders at the head of the rock glacier have been most recently deposited and have been least influenced by rock glacier flow. In contrast, boulders at the rock glacier toe display signs of being inactive for many years. Boulders at the rock glacier toe and upper lobe face display a preferred orientation, which is attributed to past rock glacier activity. The lateral ridges of the rock glacier were the first areas to stabilize, probably more than 1000 years ago. In addition to a warming climate, the lack of a continued supply of debris from the headwall above Akela rock glacier was a factor in its becoming inactive. These results indicate that both fabric analysis and relative dating methods can be used to better understand the geomorphic character and age of rock glaciers.

Rock glaciers in the Olympic Mountains occur entirely within the more continental northeastern section of the Olympics. Within this area, they are preferentially located to the lee of the Needles Ridge and Mt. Constance Massif, where precipitation is most limited. These rock glaciers may be composed of either sandstones or basalts, but are restricted to areas where their debris supply is coarse and blocky. The surface character of the eight rock glaciers surveyed suggests that at least seven of them are inactive.

The rock glaciers occupy an elevational zone distinct from present or past glaciers as a result of their formation in areas of limited snow accumulation. Also, their downslope elevation may be restrained by lack of debris from the cliffs above them. The mean rock glacier toe elevation of about 1700 m suggests an approximate lower limit for discontinuous Neoglacial permafrost.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Comments

If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to pdxscholar@pdx.edu and include clear identification of the work, preferably with URL.

Persistent Identifier

https://archives.pdx.edu/ds/psu/20182

Share

COinS