Sponsor
Portland State University. Department of Environmental Science and Management
First Advisor
J. Alan Yeakley
Term of Graduation
2011
Date of Publication
1-1-2011
Document Type
Thesis
Degree Name
Master of Science (M.S.) in Environmental Science and Resources
Department
Environmental Sciences and Resources
Language
English
Subjects
Ecology, Hydrologic sciences, Urban forestry, Trees in cities -- Oregon -- Portland, Douglas fir -- Pacific Northwest, Forest canopies, Plant-water relationships
DOI
10.15760/etd.37
Physical Description
1 online resource (ix, 76 pages)
Abstract
I hypothesized that Douglas-fir trees (Pseudotsuga menziesii) standing apart from other trees ('open-grown') will intercept more rainfall than Douglas-fir trees standing near other trees ('closed-canopy'). Open-grown trees differ structurally and are more common in urban settings, yet have been infrequently studied. Existing literature, based primarily on closed-canopy trees, suggests Douglas-fir trees in Pacific Northwest forests intercept approximately 25% of rainfall annually. Because open-grown trees have more vertical leaf area than individual trees in closed-canopy forests, I expected to find higher interception by open-grown trees.
I collected throughfall under four open-grown Douglas-firs using six static collectors ('buckets') per tree, and two closed-canopy Douglas-firs using six buckets per tree. I compared their throughfall to the incident rainfall in two adjacent open-field buckets. Gross interception was measured in 53 collections during rainy weather from 16Nov07 to 31Mar08. Over the same period, rainfall per hour, wind speed, gust speed, wind direction, temperature and relative humidity were collected at a weather station located within 1 km of the site. For comparison, average hourly rainfall at Portland International Airport from 1950 to 2005, for the same months of the collection period, showed a comparable number of medium- to high-intensity storms, but more low-intensity storms.
I found that incident rainfall for the adjacent open-field buckets totaled 65.6cm and 71.6cm over the study period. Interception values for closed-canopy trees averaged 26%, corresponding to the literature, with results of 22 and 30%. Interception values for open-grown trees averaged 31%, with results ranging from 15 to 45%. Three of the 24 buckets returned overall negative interception rates over five months.
Given the lower storm intensity of 2007-08, interception rates may be somewhat high, compared to the historical average. The negative interception rates at three buckets were likely due to their locations under high drip points, as has been observed in other studies. Considering the wide range of canopy architecture among open-grown trees, the high variability in interception was not surprising. My hypothesis was supported by the data, but requires more testing to better generalize these results. Future studies that link open grown tree canopy morphological characteristics to interception are warranted.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
http://archives.pdx.edu/ds/psu/7103
Recommended Citation
Bixby, Mitchell, "Interception in Open-grown Douglas-fir (Pseudotsuga menziesii) Urban Canopy" (2011). Dissertations and Theses. Paper 37.
https://doi.org/10.15760/etd.37