Sponsor
Portland State University. Department of Mechanical and Materials Engineering
First Advisor
Sung Yi
Date of Publication
Fall 1-16-2018
Document Type
Thesis
Degree Name
Master of Science (M.S.) in Mechanical Engineering
Department
Mechanical and Materials Engineering
Language
English
Subjects
Viscoplasticity -- Mathematical models, Solder and soldering, Joints (Engineering), Thermal stresses, Strains and stresses
DOI
10.15760/etd.5959
Physical Description
1 online resource (viii, 64 pages)
Abstract
Embedded active and passive devices has been increasingly used by in order to integrate more functions inside the same or smaller size device and to meet the need for better electrical performance of the component assemblies.
Solder joints have been used in the electronic industry as both structural and electrical interconnections between electronic packages and printed circuit boards (PCB). When solder joints are under thermal cyclic loading, mismatch in coefficients of thermal expansion (CTE) between the printed circuit boards and the solder balls creates thermal strains and stresses on the joints, which may finally result in cracking. Consequently, the mechanical interconnection is lost, leading to electrical failures which in turn causes malfunction of the circuit or whole system.
When a die is embedded into a substrate, Young's modulus of the die is larger than one of the core of the substrate and the CTEs of the die is smaller than those of the substrate. As a result, mismatch in coefficients of thermal expansions (CTE) between the substrate with the embedded device and the solder balls may increase.
In the present study, finite element method (FEM) is employed to find out the stress and strain distribution of ball grid array(BGA) solders under thermal cycling. The ANAND model for viscoplasticity is employed for this purpose.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
http://archives.pdx.edu/ds/psu/23427
Recommended Citation
Radhakrishnan, Sadhana, "Stress Analysis of Embedded Devices Under Thermal Cycling" (2018). Dissertations and Theses. Paper 4075.
https://doi.org/10.15760/etd.5959