Sponsor
Portland State University. Department of Physics
First Advisor
M. Aslam K. Khalil
Date of Publication
1-1-2011
Document Type
Dissertation
Degree Name
Doctor of Philosophy (Ph.D.) in Applied Physics
Department
Physics
Language
English
Subjects
Rice -- Planting -- Environmental aspects, Methane -- Environmental aspects, Atmospheric nitrous oxide -- Environmental aspects, Global warming
DOI
10.15760/etd.43
Physical Description
1 online resource (xviii, 174 p.)
Abstract
The effect of global warming on methane (CH₄) and nitrous oxide (N₂O) emissions from agriculture was investigated and simulated from a soil warming experiment. Experiments were designed and installed in a temperature controlled greenhouse. The relationships between elevated temperatures and CH₄ and N₂O emissions were determined and calculated as the Q₁₀s of production, emission and oxidation. A study of the populations of methanogens and methanotrophs at a range of soil temperatures was performed based on soil molecular DNA analysis. This study showed that global warming would increase CH₄ emissions from rice agriculture and that the resultant emissions will be potentially large enough to cause changes in the present atmospheric concentrations. This research also showed that this increase was most evident for soil temperatures below 30⁰C, above which emissions decreased with increasing temperature. The seasonal average Q₁₀s of CH₄ emission, production, oxidation, methanogen and methanotroph populations were found to be 1.7, 2.6 and 2.2, 2.6 and 3.8, respectively, over a temperature of 20-32⁰C. Considering that the processes of CH₄ production and emission are similar to those in natural wetlands, which is the largest source of atmospheric CH₄, the contribution of this feedback is likely to cause a significant increase to the present CH₄ atmospheric budget if the current global warming trend persists over the next century. The Q₁₀s of N₂O emissions and production were 0.5-3.3 and 0.4-2.9, respectively. The low Q₁₀ values found for N₂O suggest that although global warming will have a direct impact on the production and emission rates. Nevertheless, the magnitude of the impact of global on both CH₄ and N₂O emissions from agriculture is likely to vary from one region to another due to the spatial variations in agricultural soil temperatures and the likely changes in the global regional distribution of water resources (water tables, rainfall patterns), water management practices and the responses of terrestrial CH₄ and N₂O sources such as natural wetlands and plants.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
http://archives.pdx.edu/ds/psu/6987
Recommended Citation
Sithole, Alec, "Feedbacks of Methane and Nitrous Oxide Emissions from Rice Agriculture" (2011). Dissertations and Theses. Paper 43.
https://doi.org/10.15760/etd.43
Comments
Portland State University. Dept. of Physics