Sponsor
Portland State University. Department of Geography
First Advisor
Paul Loikith
Date of Publication
Spring 6-13-2018
Document Type
Thesis
Degree Name
Master of Science (M.S.) in Geography
Department
Geography
Language
English
Subjects
Rain and rainfall -- Measurement, Precipitation (Meteorology), Climatology
DOI
10.15760/etd.6334
Physical Description
1 online resource (ix, 66 pages)
Abstract
An extreme precipitation categorization scheme, developed to temporally and spatially visualize and track the multi-scale variability of extreme precipitation climatology, is introduced over the continental United States and used as the basis for an observational dataset intercomparison. The categorization scheme groups three-day precipitation totals exceeding 100 mm into five precipitation categories, or "P-Cats". To assess observational uncertainty across a range of precipitation measurement approaches, we compare in situ station data from the Global Historical Climatology Network-Daily (GHCN-D), satellite derived data from the Tropical Rainfall Measuring Mission (TRMM), gridded station data from the Parameter-elevation Regression on Independent Slopes Model (PRISM), global reanalysis from the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA 2), and regional reanalysis from the North American Regional Reanalysis (NARR). While all datasets capture the principal spatial patterns of extreme precipitation climatology, results show considerable variability across the five-platform suite in P-Cat frequency, spatial extent, and magnitude. Higher resolution datasets, PRISM and TRMM, most closely resemble GHCN-D and capture a greater frequency of high-end totals relative to lower resolution products, NARR and MERRA-2. When all datasets are regridded to a common coarser grid, differences persist with datasets originally constructed at a high resolution maintaining the highest frequency and magnitude of P-Cats. Potential future applications of this scheme include tracking change in P-Cats over space and time, climate model evaluation, and assessment of model projected change.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
https://archives.pdx.edu/ds/psu/25688
Recommended Citation
Slinskey, Emily Anne, "Assessment of Observational Uncertainty in Extreme Precipitation Over the Continental United States" (2018). Dissertations and Theses. Paper 4450.
https://doi.org/10.15760/etd.6334