First Advisor

John Bershaw

Date of Publication

Spring 7-6-2018

Document Type

Thesis

Degree Name

Master of Science (M.S.) in Geology

Department

Geology

Language

English

Subjects

Volcanic ash tuff etc -- Cascade Range, Hydration, Paleoclimatology

DOI

10.15760/etd.6356

Physical Description

1 online resource (v, 98 pages)

Abstract

Deuterium ratios (δD) of hydrated volcanic glass have been used to reconstruct paleoenvironments, although the reliability and proper sample preparation protocol have been debated. In this study, hydrated volcanic ash samples from the lee of the Cascades were prepared using two separate methods. Method 1 involves sonicating and rinsing samples with hydrochloric acid (HCl) followed by hand-selection of glass shards (125-212µm). Method 2 requires hydrochloric acid (HCl) and hydrofluoric acid (HF) abrasion as well as heavy liquid separation of shards (70-150µm). Method 2 produced more consistent results with decreased intra-replicate variability in both water content (-0.92 wt. %) and deuterium values (-2.5‰ δD). Method 2 δD values of ≥99% isotropic glass were also 2.5-10 % more negative relative to Method 1 values, with an increasing discrepancy with age (3.68-32.66 Ma). Method 2 results suggest volcanic glass did not re-equilibrate with modern water, based on 1) < 2‰ discrepancies between samples of the same ash flow taken from unique sample localities and 2) a ~20‰ difference between samples of different ages (~8 Ma apart) from the same locality. These results support the specified use of HF abrasion and heavy liquid separation on 70-150 µm glass shards to minimize the impact of contaminants on reconstructed paleowater δD values.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Persistent Identifier

https://archives.pdx.edu/ds/psu/25593

Share

COinS