Sponsor
Portland State University. Department of Civil Engineering
First Advisor
Trevor D. Smith
Date of Publication
10-23-1992
Document Type
Thesis
Degree Name
Master of Science in Civil Engineering (MSCE)
Department
Civil Engineering
Language
English
Subjects
Soil stabilization -- Testing, Soil consolidation test, Soil mechanics -- Testing
DOI
10.15760/etd.6548
Physical Description
1 online resource (2, xiv, 136 p.)
Abstract
In developing a constitutive model that could predict the settlement due to the collapse, several goals needed to be met. These were to gain an understanding of the collapse phenomenon, knowing the soil properties at the natural water content and how they change after collapse, and develop and test the new model. It was felt that laboratory testing could be of use. The types of test conducted included use of the Oedometer, Pressuremeter, and Triaxial tests. The material that was used for the testing was a "generic" soil manufactured out of diatomite. In all of the tests the soil was tested dry and saturated in order to establish state limits of the soil. Next, the soil was loaded dry then inundated which initiated the collapse of the soil. The stress and strains were continually recorded. From the testing it was concluded that there is a stress-strain region where after collapse the soil looses considerable strength. With increasing stress and strain the soil eventually becomes stronger. From the triaxial tests, the stress-strain data from this "region of collapse" was used in a constitutive model. Stress paths from the Oedometer and Pressuremeter tests were then successfully applied to the model. The constitutive model used was an elasto plastic model. The elastic and plastic strain components were provided using functions for yielding, hardening, plastic potential, and failure as proposed by Paul Lade in his work on cohesionless, frictional materials. Results from the conventional triaxial shear tests and isotropic compression tests were used to derive the values of the functions for the model. The end result was three dimensional surfaces for failure, yielding, plastic work and plastic potential for the dry and saturated soil in the zone of collapse.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
https://archives.pdx.edu/ds/psu/27177
Recommended Citation
Denham, Martha H., "The Use of Laboratory Testing to Understand the Behavior of Collapsible Soil Upon Wetting" (1992). Dissertations and Theses. Paper 4664.
https://doi.org/10.15760/etd.6548
Comments
If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to pdxscholar@pdx.edu and include clear identification of the work, preferably with URL