First Advisor

Malgorzata E. Chranowska-Jeske

Date of Publication

2-10-1995

Document Type

Thesis

Degree Name

Master of Science (M.S.) in Electrical and Computer Engineering

Department

Electrical Engineering

Language

English

Subjects

Decision trees, Electronic circuit design, Cellular automata, Field programmable gate arrays

DOI

10.15760/etd.6790

Physical Description

1 online resource (viii, 77 p.)

Abstract

This thesis presents a new technique for mapping combinational circuits to Fine-Grain Cellular-Architecture FPGAs. We represent the netlist as the binary tree with decision variables associated with each node of the tree. The functionality of the tree nodes is chosen based on the target FPGA architecture. The proposed tree restructuring algorithms preserve local connectivity and allow direct mapping of the trees to the cellular array, thus eliminating the traditional routing phase. Also, predictability of the signal delays is a very important advantage of the developed approach. The developed bus-assignment algorithm efficiently utilizes the medium distance routing resources (buses). The method is general and can be used for any Fine Grain CA-type FPGA. To demonstrate our techniques, ATMEL 6000 series FPGA was used as a target architecture. The area and delay comparison between our methods and commercial tools is presented using a set of MCNC benchmarks. Final layouts of the implemented designs are included. Results show that the proposed techniques outperform the available commercial tools for ATMEL 6000 FPGAs, both in area and delay optimization.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Comments

If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to pdxscholar@pdx.edu and include clear identification of the work, preferably with URL

Persistent Identifier

https://archives.pdx.edu/ds/psu/28543

Share

COinS