Sponsor
Portland State University. Department of Chemistry
First Advisor
Robert M. Strongin
Date of Publication
Fall 11-19-2019
Document Type
Dissertation
Degree Name
Doctor of Philosophy (Ph.D.) in Chemistry
Department
Chemistry
Language
English
Subjects
Electronic cigarettes, Cigarette smoke -- Composition
DOI
10.15760/etd.7211
Physical Description
1 online resource (viii, 85 pages)
Abstract
The purported safety of electronic cigarettes has come under scrutiny with the significant increase of lung related illnesses starting in the summer of 2019. Public view has started to shift towards understanding the potential negative health impact associated with these devices. While many investigations indicate probable hazards present in e-cigarette aerosols, inter-laboratory assessments are wide ranging and can be contradictory. Due to the novelty of this field, relatively little is known about these products. In this work, the identification and quantification of inhalation toxicants such as formaldehyde, acrolein, acetaldehyde and dihydroxyacetone are reported. Results of the investigation of the ability of various e-cigarette components to modulate levels of toxins are also described. Upon identifying that inter-device power settings did not correlate well with toxin production, the relationships between wicking efficiency and coil parameters were studied. A simple model was developed that performed in the moderate to substantial range as a predictor of the relative carbonyl levels produced upon vaping twelve different e-cigarettes. It can thus be used to predict the relative harm of devices across varying styles. Related investigations showed that additives in the electronic cigarette liquid promote the formation of toxicants upon aerosolization. The addition of triacetin, an additive found in both e-cigarettes and combustible cigarettes, led to a significant increase in the levels of formaldehyde, acrolein and acetaldehyde. By using 13C labeled triacetin and a combination of 1H NMR and 13C NMR, the ester hydrolysis of triacetin to form acetic acid was identified. The released acetic acid acted as a catalyst to promote the degradation of propylene glycol and glycerol upon heating. Carbon-13 labeling thus enabled the precise identification of the mechanistic pathway whereby triacetin addition to e-liquid leads to elevated levels of aldehyde toxins in e-cigarette aerosols. The elucidation of the physical and chemical origins of e-cigarette aerosol toxins will aid efforts to mitigate harm.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
https://archives.pdx.edu/ds/psu/30694
Recommended Citation
Vreeke, Shawna, "Investigating the Origins of Toxins Present in Electronic Cigarette Aerosols" (2019). Dissertations and Theses. Paper 5338.
https://doi.org/10.15760/etd.7211