Sponsor
Portland State University. Department of Electrical and Computer Engineering
First Advisor
James McNames
Term of Graduation
Fall 2009
Date of Publication
9-28-2009
Document Type
Dissertation
Degree Name
Doctor of Philosophy (Ph.D.) in Electrical and Computer Engineering
Department
Electrical and Computer Engineering
Language
English
Subjects
Biomedical engineering, Monte Carlo method, Signal processing
DOI
10.15760/etd.8019
Physical Description
1 online resource (2, xiii, 217 pages)
Abstract
Cyclical patterns are common in signals that originate from natural systems such as the human body and man-made machinery. Often these cyclical patterns are not perfectly periodic. In that case, the signals are called pseudo-periodic or quasi-periodic and can be modeled as a sum of time-varying sinusoids, whose frequencies, phases, and amplitudes change slowly over time. Each time-varying sinusoid represents an individual rhythmical component, called a partial, that can be characterized by three parameters: frequency, phase, and amplitude. Quasi-periodic signals often contain multiple partials that are harmonically related. In that case, the frequencies of other partials become exact integer multiples of that of the slowest partial. These signals are referred to as multi-harmonic signals. Examples of such signals are electrocardiogram (ECG), arterial blood pressure (ABP), and human voice.
A Markov process is a mathematical model for a random system whose future and past states are independent conditional on the present state. Multi-harmonic signals can be modeled as a stochastic process with the Markov property. The Markovian representation of multi-harmonic signals enables us to use state-space tracking methods to continuously estimate the frequencies, phases, and amplitudes of the partials.
Several research groups have proposed various signal analysis methods such as hidden Markov Models (HMM), short time Fourier transform (STFT), and Wigner-Ville distribution to solve this problem. Recently, a few groups of researchers have proposed Monte Carlo methods which estimate the posterior distribution of the fundamental frequency in multi-harmonic signals sequentially. However, multi-harmonic tracking is more challenging than single-frequency tracking, though the reason for this has not been well understood. The main objectives of this dissertation are to elucidate the fundamental obstacles to multi-harmonic tracking and to develop a reliable multi-harmonic tracker that can track cyclical patterns in multi-harmonic signals.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
https://archives.pdx.edu/ds/psu/38642
Recommended Citation
Kim, Sungan, "Tracking Rhythmicity in Biomedical Signals using Sequential Monte Carlo methods" (2009). Dissertations and Theses. Paper 6159.
https://doi.org/10.15760/etd.8019
Comments
If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to pdxscholar@pdx.edu and include clear identification of the work, preferably with URL.