Sponsor
Portland State University. Department of Electrical and Computer Engineering
Term of Graduation
Fall 2008
Date of Publication
11-18-2008
Document Type
Dissertation
Degree Name
Doctor of Philosophy (Ph.D.) in Electrical and Computer Engineering
Department
Electrical and Computer Engineering
Language
English
Subjects
Associative storage, Computer architecture, Electronic data processing -- Distributed processing, Complementary Metal oxide semiconductors
DOI
10.15760/etd.8033
Physical Description
1 online resource (2, xi, 209 pages)
Abstract
During the past several decades, the semiconductor industry has grown into a global industry with revenues around $300 billion. Intel no longer relies on only transistor scaling for higher CPU performance, but instead, focuses more on multiple cores on a single die. It has been projected that in 2016 most CMOS circuits will be manufactured with 22 nm process. The CMOS circuits will have a large number of defects. Especially when the transistor goes below sub-micron, the original deterministic circuits will start having probabilistic characteristics. Hence, it would be challenging to map traditional computational models onto probabilistic circuits, suggesting a need for fault-tolerant computational algorithms. Biologically inspired algorithms, or associative memories (AMs)—the building blocks of cortical hierarchically distributed memories (HDMs) discussed in this dissertation, exhibit a remarkable match to the nano-scale electronics, besides having great fault-tolerance ability. Research on the potential mapping of the HDM onto CMOL (hybrid CMOS/nanoelectronic circuits) nanogrids provides useful insight into the development of non-von Neumann neuromorphic architectures and semiconductor industry. In this dissertation, we investigated the implementations of AMs on different hardware platforms, including microprocessor based personal computer (PC), PC cluster, field programmable gate arrays (FPGA), CMOS, and CMOL nanogrids.
We studied two types of neural associative memory models, with and without temporal information. In this research, we first decomposed the computational models into basic and common operations, such as matrix-vector inner-product and k-winners-take-all (k-WTA). We then analyzed the baseline performance/price ratio of implementing the AMs with a PC. We continued with a similar performance/price analysis of the implementations on more parallel hardware platforms, such as PC cluster and FPGA. However, the majority of the research emphasized on the implementations with all digital and mixed-signal full-custom CMOS and CMOL nanogrids.
In this dissertation, we draw the conclusion that the mixed-signal CMOL nanogrids exhibit the best performance/price ratio over other hardware platforms. We also highlighted some of the trade-offs between dedicated and virtualized hardware circuits for the HDM models. A simple time-multiplexing scheme for the digital CMOS implementations can achieve comparable throughput as the mixed-signal CMOL nanogrids.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
https://archives.pdx.edu/ds/psu/38694
Recommended Citation
Gao, Changjian, "Hardware Architectures and Implementations for Associative Memories : the Building Blocks of Hierarchically Distributed Memories" (2008). Dissertations and Theses. Paper 6173.
https://doi.org/10.15760/etd.8033
Comments
If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to pdxscholar@pdx.edu and include clear identification of the work, preferably with URL.