Sponsor
Portland State University. Systems Science Ph. D. Program
First Advisor
George G. Lendaris
Date of Publication
Summer 1-1-2012
Document Type
Dissertation
Degree Name
Doctor of Philosophy (Ph.D.) in Systems Science
Department
Systems Science
Language
English
Subjects
Hippocampus (Brain), Neuroplasticity -- Mathematical model, Episodic memory, Neural transmission -- Mathematical models
DOI
10.15760/etd.756
Physical Description
1 online resource (xvii, 229 p.) : ill. (chiefly col.)
Abstract
A new mathematical model of short-term synaptic plasticity (STP) at the Schaffer collateral is introduced. Like other models of STP, the new model relates short-term synaptic plasticity to an interaction between facilitative and depressive dynamic influences. Unlike previous models, the new model successfully simulates facilitative and depressive dynamics within the framework of the synaptic vesicle cycle. The novelty of the model lies in the description of a competitive interaction between calcium-sensitive proteins for binding sites on the vesicle release machinery. By attributing specific molecular causes to observable presynaptic effects, the new model of STP can predict the effects of specific alterations to the presynaptic neurotransmitter release mechanism. This understanding will guide further experiments into presynaptic functionality, and may contribute insights into the development of pharmaceuticals that target illnesses manifesting aberrant synaptic dynamics, such as Fragile-X syndrome and schizophrenia. The new model of STP will also add realism to brain circuit models that simulate cognitive processes such as attention and memory. The hippocampal processing loop is an example of a brain circuit involved in memory formation. The hippocampus filters and organizes large amounts of spatio-temporal data in real time according to contextual significance. The role of synaptic dynamics in the hippocampal system is speculated to help keep the system close to a region of instability that increases encoding capacity and discriminating capability. In particular, synaptic dynamics at the Schaffer collateral are proposed to coordinate the output of the highly dynamic CA3 region of the hippocampus with the phase-code in the CA1 that modulates communication between the hippocampus and the neocortex.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
http://archives.pdx.edu/ds/psu/8309
Recommended Citation
Toland, Andrew Hamilton, "Short-Term Plasticity at the Schaffer Collateral: A New Model with Implications for Hippocampal Processing" (2012). Dissertations and Theses. Paper 756.
https://doi.org/10.15760/etd.756
Included in
Musculoskeletal, Neural, and Ocular Physiology Commons, Neurology Commons, Other Mathematics Commons