Sponsor
Portland State University. Department of Civil & Environmental Engineering
First Advisor
Peter Dusicka
Date of Publication
1-1-2011
Document Type
Thesis
Degree Name
Master of Science (M.S.) in Civil & Environmental Engineering
Department
Civil and Environmental Engineering
Language
English
Subjects
Gusset plates, Iron and steel bridges -- Design and construction, Finite element method
DOI
10.15760/etd.84
Physical Description
1 online resource (ix, 134 p.)
Abstract
Gusset plate connections are commonly used in steel truss bridges to connect individual members together at a node. Many of these bridges are classified as non-load-path-redundant bridges, meaning a failure of a single truss member or connection could lead to collapse. Current gusset plated design philosophy is based upon experimental work from simplified, small-scale connections which are seldom representative of bridge connections. This makes development of a refined methodology for conducting high-fidelity strength capacity evaluations for existing bridge connections a highly desirable goal. The primary goal of this research effort is to develop an analytical model capable of evaluating gusset plate stresses and ultimate strength limit states. A connection-level gusset connection model was developed in parallel with an experimental testing program at Oregon State University. Data was collected on elastic stress distributions and ultimate buckling capacity. The analytical model compared different bolt modeling techniques on their effectiveness in predicting buckling loads and stress distributions. Analytical tensile capacity was compared to the current bridge gusset plate design equations for block shear. Results from the elastic stress analysis showed no significant differences between the bolt modeling techniques examined, and moderate correlation between analytical and experimental values. Results from the analytical model predicted experimental buckling capacity within 10% for most of the bolt modeling techniques examined. Tensile capacity was within 7% of the calculated tensile nominal capacity for all bolt modeling techniques examined. A preliminary parametric study was conducted to investigate the effects of member flexural stiffness and length on gusset plate buckling capacity, and showed an increase in member length or decrease in member flexural stiffness resulted in diminished gusset plate buckling capacity.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
http://archives.pdx.edu/ds/psu/6945
Recommended Citation
Kay, Thomas Sidney, "Numerical Modeling and Analyses of Steel Bridge Gusset Plate Connections" (2011). Dissertations and Theses. Paper 84.
https://doi.org/10.15760/etd.84
Comments
Portland State University. Dept. of Civil & Environmental Engineering