Published In

Journal of Cell Biology

Document Type

Article

Publication Date

11-1-2016

Abstract

With their essential role in inner ear function, stereocilia of sensory hair cells demonstrate the importance of cellular actin protrusions. Actin packing in stereocilia is mediated by cross-linkers of the plastin, fascin, and espin families. Although mice lacking espin (ESPN) have no vestibular or auditory function, we found that mice that either lacked plastin 1 (PLS1) or had nonfunctional fascin 2 (FSCN2) had reduced inner ear function, with double-mutant mice most strongly affected. Targeted mass spectrometry indicated that PLS1 was the most abundant cross-linker in vestibular stereocilia and the second most abundant protein overall; ESPN only accounted for ∼15% of the total cross-linkers in bundles. Mouse utricle stereocilia lacking PLS1 were shorter and thinner than wild-type stereocilia. Surprisingly, although wild-type stereocilia had random liquid packing of their actin filaments, stereocilia lacking PLS1 had orderly hexagonal packing. Although all three cross-linkers are required for stereocilia structure and function, PLS1 biases actin toward liquid packing, which allows stereocilia to grow to a greater diameter.

Description

Copyright 2016 the authors. This is the publishers PDF here with permission. The definitive version can be found here.

DOI

10.1083/jcb.201606036

Persistent Identifier

http://archives.pdx.edu/ds/psu/19473

Share

COinS