Refining Semantic Similarity of Paraphasias Using a Contextual Language Model
Published In
Journal of Speech, Language, and Hearing Research : JSLHR
Document Type
Citation
Publication Date
12-9-2022
Abstract
Purpose: ParAlg (Paraphasia Algorithms) is a software that automatically categorizes a person with aphasia's naming error (paraphasia) in relation to its intended target on a picture-naming test. These classifications (based on lexicality as well as semantic, phonological, and morphological similarity to the target) are important for characterizing an individual's word-finding deficits or anomia. In this study, we applied a modern language model called BERT (Bidirectional Encoder Representations from Transformers) as a semantic classifier and evaluated its performance against ParAlg's original word2vec model.
Method: We used a set of 11,999 paraphasias produced during the Philadelphia Naming Test. We trained ParAlg with word2vec or BERT and compared their performance to humans. Finally, we evaluated BERT's performance in terms of word-sense selection and conducted an item-level discrepancy analysis to identify which aspects of semantic similarity are most challenging to classify.
Results: Compared with word2vec, BERT qualitatively reduced word-sense issues and quantitatively reduced semantic classification errors by almost half. A large percentage of errors were attributable to semantic ambiguity. Of the possible semantic similarity subtypes, responses that were associated with or category coordinates of the intended target were most likely to be misclassified by both models and humans alike.
Conclusions: BERT outperforms word2vec as a semantic classifier, partially due to its superior handling of polysemy. This work is an important step for further establishing ParAlg as an accurate assessment tool.
Rights
copyright 2022 American Speech-Language-Hearing Association
Locate the Document
DOI
10.1044/2022_JSLHR-22-00277
Persistent Identifier
https://archives.pdx.edu/ds/psu/38990
Citation Details
Salem, A. C., Gale, R., Casilio, M., Fleegle, M., Fergadiotis, G., & Bedrick, S. (2022). Refining Semantic Similarity of Paraphasias Using a Contextual Language Model. Journal of Speech, Language, and Hearing Research, 1-15.