Presentation Type
Oral Presentation
Location
Portland State University
Start Date
5-4-2016 1:30 PM
End Date
5-4-2016 3:00 PM
Subjects
Graph theory, Sudoku, Combinatorial analysis
Abstract
Encoding Sudoku puzzles as partially colored graphs, we state and prove Akman’s theorem [1] regarding the associated partial chromatic polynomial [5]; we count the 4x4 sudoku boards, in total and fundamentally distinct; we count the diagonally distinct 4x4 sudoku boards; and we classify and enumerate the different structure types of 4x4 boards.
Rights
© Copyright the author(s)
IN COPYRIGHT:
http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DISCLAIMER:
The purpose of this statement is to help the public understand how this Item may be used. When there is a (non-standard) License or contract that governs re-use of the associated Item, this statement only summarizes the effects of some of its terms. It is not a License, and should not be used to license your Work. To license your own Work, use a License offered at https://creativecommons.org/
Persistent Identifier
http://archives.pdx.edu/ds/psu/17164
Included in
Algebra Commons, Discrete Mathematics and Combinatorics Commons, Other Mathematics Commons
Math and Sudoku: Exploring Sudoku Boards Through Graph Theory, Group Theory, and Combinatorics
Portland State University
Encoding Sudoku puzzles as partially colored graphs, we state and prove Akman’s theorem [1] regarding the associated partial chromatic polynomial [5]; we count the 4x4 sudoku boards, in total and fundamentally distinct; we count the diagonally distinct 4x4 sudoku boards; and we classify and enumerate the different structure types of 4x4 boards.
Comments/Description
Faculty Advisor: John Caughman