Presentation Type

Poster

Start Date

5-4-2022 11:00 AM

End Date

5-4-2022 1:00 PM

Subjects

Nuclear Radiation, Agent Based Modeling, Deep Reinforcement Learning, Particle Swarm Optimization, Memristor Applications

Advisor

Dr. Christof Teuscher

Student Level

Masters

Abstract

Gamma radiation is a very high frequency, very dangerous electromagnetic wave that has a chance of being emitted after radioactive decay. Radiation source localization, or locating the previously unknown source of nuclear radiation, in a rapid and efficient manner is critically important, but challenging. We aim to create an architecture for multiple, fully independent agents that cooperate to localize sources faster than existing single-agent architectures, without compromising accuracy. Using Agent-Based Modeling and Deep Reinforcement Learning, agents are enabled to make decisions based on other agents' behaviors while maintaining programmatic autonomy. We hypothesize that radiation sources can be localized faster using multiple agents rather than one.

Rights

© Copyright the author(s)

IN COPYRIGHT:
http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

DISCLAIMER:
The purpose of this statement is to help the public understand how this Item may be used. When there is a (non-standard) License or contract that governs re-use of the associated Item, this statement only summarizes the effects of some of its terms. It is not a License, and should not be used to license your Work. To license your own Work, use a License offered at https://creativecommons.org/

Persistent Identifier

https://archives.pdx.edu/ds/psu/37473

Share

COinS
 
May 4th, 11:00 AM May 4th, 1:00 PM

The Power of the Collective: a Multi Agent-Based Modeling Approach to Nuclear Radiation Localization

Gamma radiation is a very high frequency, very dangerous electromagnetic wave that has a chance of being emitted after radioactive decay. Radiation source localization, or locating the previously unknown source of nuclear radiation, in a rapid and efficient manner is critically important, but challenging. We aim to create an architecture for multiple, fully independent agents that cooperate to localize sources faster than existing single-agent architectures, without compromising accuracy. Using Agent-Based Modeling and Deep Reinforcement Learning, agents are enabled to make decisions based on other agents' behaviors while maintaining programmatic autonomy. We hypothesize that radiation sources can be localized faster using multiple agents rather than one.