Document Type
Presentation
Publication Date
Spring 4-21-2021
Subjects
Information theory, categorical data, Geographic Information Systems, Reconstructability Analysis, NLCD satetlite data, R-Studio, Python
Abstract
Information theory -- Reconstructability Analysis (RA) implemented in the Occam software -- was used to extract patterns from National Land Cover Data. The aim was to predict temporal change in evergreen forests from time-lagged and spatially adjacent states. The NLCD satellite data were preprocessed with Python and submitted to Occam for analysis, and Occam output was also explored with R-studio. The effectiveness of RA methodology for the analysis of this type of categorical space-time grid data was demonstrated.
Persistent Identifier
https://archives.pdx.edu/ds/psu/35709
Citation Details
Percy, David (2021). "Using Information Theory to Extract Patterns from Categorical Raster Data." Presented at GIS in Action, a virtual conference, Portland State University, April 21, 2021.
Description
Presented at GIS in Action, April 21, 2021 Virtual conference hosted by Portland State University.