On-Line System Identification Using Context Discernment
Sponsor
This work was partially supported by NSF Grant ECS-0301022
Published In
Proceedings of the International Joint Conference on Neural Networks
Document Type
Citation
Publication Date
12-1-2005
Abstract
Mathematical models are often used in system identification applications. The dynamics of most systems, however, change over time and the sources of these changes cannot always be directly determined or measured. To maintain model accuracy, it is desirable to design system identifiers that can adapt to these dynamical shifts. We use reinforcement learning to train an agent to recognize dynamical changes in a modeled system and to estimate new parameter values for the model. The subsequent actions of this agent are characterized as "moving" the parameterized model on an optimal trajectory in model parameter space. It is found that this method is capable of quickly and accurately discerning the correct parameter values. © 2005 IEEE.
Locate the Document
https://doi.org/10.1109/IJCNN.2005.1555953
DOI
10.1109/IJCNN.2005.1555953
Persistent Identifier
https://archives.pdx.edu/ds/psu/37318
Citation Details
Holmstrom, L., Santiago, R., & Lendaris, G. G. (2005, July). On-line system identification using context discernment. In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. (Vol. 2, pp. 792-797). IEEE.