Sponsor
This research was supported using funds provided by the Bureau of Land Management through the sale of public lands as authorized by the Southern Nevada Public Land Management Act (SNPLMA), and was funded in part through grant 10 DG-11272170-038 from the USDA Forest Service Pacific Southwest Research Station.
Published In
Forest Ecology and Management
Document Type
Article
Publication Date
3-2014
Subjects
Carbon sequestration -- California -- Case studies, Forest management -- California -- Lake Tahoe basin, Firescaping, Prescribed burning, Wildfire risk
Abstract
Fuel-reduction treatments are used extensively to reduce wildfire risk and restore forest diversity and function. In the near future, increasing regulation of carbon (C) emissions may force forest managers to balance the use of fuel treatments for reducing wildfire risk against an alternative goal of C sequestration. The objective of this study was to evaluate how long-term fuel treatments mitigate wildfires and affect forest C. For the Lake Tahoe Basin in the central Sierra Nevada, USA, fuel treatment efficiency was explored with a landscape-scale simulation model, LANDIS-II, using five fuel treatment scenarios and two (contemporary and potential future) fire regimes. Treatment scenarios included applying a combination of light (hand) and moderate (mechanical) forest thinning continuously through time and transitioning from these prescriptions to a more mid-seral thinning prescription, both on a 15 and 30 year rotation interval. In the last scenario, fuel treatments were isolated to around the lake shore (nearby urban settlement) to simulate a low investment alternative were future resources may be limited. Results indicated that the forest will remain a C sink regardless of treatment or fire regime simulated, due to the landscape legacy of historic logging. Achievement of a net C gain required decades with intensive treatment and depended on wildfire activity: Fuel treatments were more effective in a more active fire environment, where the interface between wildfires and treatment areas increased and caused net C gain earlier than as compared to our scenarios with less wildfire activity. Fuel treatments were most effective when continuously applied and strategically placed in high ignition areas. Treatment type and re-application interval were less influential at the landscape scale, but had notable effects on species dynamics within management units. Treatments created more diverse forest conditions by shifting dominance patterns to a more mixed conifer system, with a higher proportion of fire-tolerant species. We demonstrated that a small amount of wildfire on the landscape resulted in significant changes in the C pool, and that strategically placed fuel treatments substantially reduced wildfire risk, increased fire resiliency of the forest, and is beneficial for long-term C management. Implications for landscape management included consideration for prioritization of treatment areas and creating ideal re-entry schedules that meet logistic, safety, and conservation goals. In forests with a concentrated wildland urban interface, fuel treatments may be vital for ensuring human welfare and enhancing forest integrity in a fire-prone future.
Rights
To the best of our knowledge, one or more authors of this paper were federal employees when contributing to this work. This is the publisher’s final pdf. The published article is copyrighted by Elsevier B.V., and can be found at: http://dx.doi.org/10.1016/j.foreco.2014.03.011.
DOI
10.1016/j.foreco.2014.03.011
Persistent Identifier
http://archives.pdx.edu/ds/psu/11523
Citation Details
Loudermilk, E. Louise, et al. "Effectiveness of fuel treatments for mitigating wildfire risk and sequestering forest carbon: A case study in the Lake Tahoe Basin." Forest Ecology and Management 323 (2014): 114-125.
Included in
Environmental Indicators and Impact Assessment Commons, Natural Resources Management and Policy Commons
Description
To the best of our knowledge, one or more authors of this paper were federal employees when contributing to this work. This is the publisher’s final pdf. The published article is copyrighted by Elsevier B.V., and can be found at: http://dx.doi.org/10.1016/j.foreco.2014.03.011.