Published In

Frontiers in Neurorobotics

Document Type

Article

Publication Date

8-2017

Subjects

Artificial neural networks, Locomotion -- Computer simulation

Abstract

A dynamical model of an animal’s nervous system, or synthetic nervous system (SNS), is a potentially transformational control method. Due to increasingly detailed data on the connectivity and dynamics of both mammalian and insect nervous systems, controlling a legged robot with an SNS is largely a problem of parameter tuning. Our approach to this problem is to design functional subnetworks that perform specific operations, and then assemble them into larger models of the nervous system. In this paper, we present networks that perform addition, subtraction, multiplication, division, differentiation, and integration of incoming signals. Parameters are set within each subnetwork to produce the desired output by utilizing the operating range of neural activity, R, the gain of the operation, k, and bounds based on biological values. The assembly of large networks from functional subnetworks underpins our recent results with MantisBot.

Description

© 2017 Szczecinski, Hunt and Quinn. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Article is available online at: https://doi.org/10.3389/fnbot.2017.00037

DOI

10.3389/fnbot.2017.00037

Persistent Identifier

http://archives.pdx.edu/ds/psu/21176

Share

COinS