Sponsor
National Science Foundation (NSF). Grant Number: NSF-EAR-1346580
Published In
JGR Solid Earth
Document Type
Article
Publication Date
11-2019
Subjects
Plume modeling, Volcanism -- research
Abstract
During volcanic eruptions, model predictions of plume height are limited by the accuracy of entrainment coefficients used in many plume models. Typically, two parameters are used, 𝛼 and 𝛽, which relate the entrained air speed to the jet speed in the axial and cross-flow directions, respectively. To improve estimates of these parameters, wind tunnel experiments have been conducted for a range of cross-wind velocities and turbulence conditions. Measurements are compared directly to computations from the 1-D plume model, Plumeria, in the near-field, bending region of the jet. Entrainment coefficients are determined through regression analysis, demonstrating optimal combinations of effective 𝛼 and 𝛽 values. For turbulent conditions, all wind speeds overlapped at a single combination, 𝛼 = 0.06 and 𝛽 = 0.46, each of which are slightly reduced from standard values. Refined coefficients were used to model plume heights for 20 historical eruptions. Model accuracy improves modestly in most cases, agreeing to within 3 km with observed plume heights. For weak eruptions, uncertainty in field measurements can outweigh the effects of these refinements, illustrating the challenge of applying plume models in practice.
Locate the Document
DOI
10.1029/2018JB017224
Persistent Identifier
https://archives.pdx.edu/ds/psu/30732
Citation Details
McNeal, J. S., Freedland, G., Mastin, L. G., Cal, R. B., & Solovitz, S. A. (2019). Investigating the Accuracy of One‐Dimensional Volcanic Plume Models using Laboratory Experiments and Field Data. Journal of Geophysical Research: Solid Earth.
Description
© 2019 American Geophysical Union