Synthesis and characterization of lanthanide-doped sodium holmium fluoride nanoparticles for potential application in photothermal therapy

Published In

Frontiers of Materials Science

Document Type

Citation

Publication Date

12-1-2020

Abstract

Upconversion nanoparticles (UC NPs) in combination with plasmonic materials have great potential for cancer photothermal therapy. Recently, sodium holmium fluoride (NaHoF4) is being investigated for luminescence and magnetic resonance imaging (MRI) contrast agent. Here, we present successful synthesis of excellent quality doped NaHoF4 NPs for possible UC luminescence application and coated for possible photothermal therapy application. Synthesized NaHoF4 nanocrystals were doped with Yb/Er and coated with gold, gold/silica, silver and polypyrrole (PPy). XRD, XPS and TEM were used to determine structure and morphology of the NPs. Strong UC photoluminescence (PL) emission spectra were obtained from the NPs when excited by near-infrared (NIR) light at 980 nm. Cell viability and toxicity of the NPs were characterized using pancreatic and ovarian cancer cells with results showing that gold/ silica coating produced least toxicity followed by gold coating.

Description

If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to pdxscholar@pdx.edu and include clear identification of the work, preferably with URL.

DOI

10.1007/s11706-019-0480-1

Persistent Identifier

https://archives.pdx.edu/ds/psu/32513

Share

COinS