Sponsor
This work is partially supported by the U.S. Department of Energy [grant number DE-EE0008168]. Dr. Calaf also acknowledges the Mechanical Engineering Department at the University of Utah for start-up funds and the Center for High Performance Computing (CHPC) at the University of Utah for computing resources.
Published In
Renewable Energy
Document Type
Article
Publication Date
2020
Subjects
Solar Photovoltaic (PV) -- Module temperature
Abstract
When solar photovoltaic (PV) module temperatures rise during operation, commonly-installed modules experience an efficiency loss between 0.1 and 0.5% per degree above 25+C. Thus, extensive research has aimed to reduce the operating temperature of solar modules. However, many cooling solutions require additional cost or equipment that precludes their implementation in utility-scale PV plants. Based on previous studies of land-atmosphere interactions of surface thermal heterogeneity, we hypothesize that certain solar farm arrangements may enhance natural convective heat transfer between the solar modules and surrounding flow. Due to the strong non-linear relationship between module temperature and convective heat transfer, enhancing the convective cooling could have substantial impacts on module efficiency. Here, we investigate the potential impact of module arrangements on the convective cooling of large PV arrays. Three idealized module arrangements are evaluated in comparison to the traditional, row-organized arrangement. To characterize each arrangement, a non-dimensional packing parameter is developed. Numerical simulation results indicate that dense arrangements with larger packing parameters more effectively enhance convective cooling than sparse arrangements. Compared to the baseline, the most compact arrangement exhibited an increase in convective heat transfer of 14.8%. These results indicate that module arrangement plays an influential role in solar farm convective cooling
Locate the Document
DOI
10.1016/j.renene.2020.04.049
Persistent Identifier
https://archives.pdx.edu/ds/psu/33415
Citation Details
Stanislawski, B., Margairaz, F., Cal, R. B., & Calaf, M. (2020). Potential of module arrangements to enhance convective cooling in solar photovoltaic arrays. Renewable Energy.
Description
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).