Sponsor
This research was funded and supported by the Department of Defense, Southern California Edison, and the Lyles College of Engineering Graduate Sponsorship Program.
Published In
Journal of Composites Science
Document Type
Article
Publication Date
7-2020
Subjects
Graphene, Nanostructured materials, Nanocomposites (Materials), Thin films, Biomedical engineering, Electron transport
Abstract
Perovskite oxides have been used as sensors, actuators, transducers, for sound generation and detection, and also in optical instruments and microscopes. Perovskite halides are currently considered as optoelectronic devices such as solar cells, photodetectors, and radiation detection, but there are major issues with stability, interfacial recombination, and electron/hole mobility. The following work looks into the fabrication of non-toxic ZnO-based lead-free alternatives to perovskite oxides for use as secondary sensors or electron transport layers along with perovskite halides for application in stacked biomedical wearable devices. Three-phase, lead-free, Zinc Oxide-Graphene-Epoxy electroactive nanocomposite thin films were fabricated. The volume fraction of the Graphene phase was held constant at 10%, while the volume fraction of the ZnO phase was varied from 10–70%. The dielectric constant, capacitance, impedance, resistance, and conductance of the samples were measured using an impedance analyzer, and the results were compared as a function of volume fraction of ZnO to understand the electron transport performance of these thin films. The impedance and dielectric spectra of the nanocomposites were recorded over a frequency range of 20 Hz to 10 MHz. The microstructural properties and cross-section of the thin films were analyzed using a Scanning Electron Microscope. The high sensitivity and electron transport properties of the composite could be potentially utilized in biomedical devices at low- and high-frequency ranges.
Rights
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
This work is licensed under a Creative Commons Attribution 4.0 International License.
DOI
10.3390/jcs4030088
Persistent Identifier
https://archives.pdx.edu/ds/psu/34074
Citation Details
Singh, M., Kumar, S., Zoghi, S., Cervantes, Y., Sarkar, D., Ahmed, S., ... & Banerjee, S. (2020). Fabrication and Characterization of Flexible Three-Phase ZnO-Graphene-Epoxy Electro-Active Thin-Film Nanocomposites: Towards Applications in Wearable Biomedical Devices. Journal of Composites Science, 4(3), 88.