Sponsor
This work was supported by the National Key Basic Research Program of China (2013CB922303, 2010CB833103), the National Natural Science Foundation of China (60976073, 11274201, 51231007), the 111 Project (B13029), and the National Fund for Fostering Talents of Basic Science (J1103212).
Published In
Nanoscale Research Letters
Document Type
Article
Publication Date
3-4-2014
Subjects
Solar batteries -- Design and construction, Quantum electronics, Quantum dots, Photovoltaic cells
Abstract
Nano-branched rutile TiO2 nanorod arrays were grown on F:SnO2 conductive glass (FTO) by a facile, two-step wet chemical synthesis process at low temperature. The length of the nanobranches was tailored by controlling the growth time, after which CdS quantum dots were deposited on the nano-branched TiO2 arrays using the successive ionic layer adsorption and reaction method to make a photoanode for quantum dot-sensitized solar cells (QDSCs). The photovoltaic properties of the CdS-sensitized nano-branched TiO2 solar cells were studied systematically. A short-circuit current intensity of approximately 7 mA/cm2 and a light-to-electricity conversion efficiency of 0.95% were recorded for cells based on optimized nano-branched TiO2 arrays, indicating an increase of 138% compared to those based on unbranched TiO2 nanorod arrays. The improved performance is attributed to a markedly enlarged surface area provided by the nanobranches and better electron conductivity in the one-dimensional, well-aligned TiO2 nanorod trunks
DOI
10.1186/1556-276X-9-107
Persistent Identifier
http://archives.pdx.edu/ds/psu/11139
Citation Details
Liu et al.: CdS quantum dot-sensitized solar cells based on nano-branched TiO2 arrays. Nanoscale Research Letters 2014 9:107. doi:10.1186/1556-276X-9-107
Description
Copyright 2014 Liu et al.; licensee Springer.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.