Impact of in Situ Current Stressing on Sn-Based Solder Joint Shear Stability
Sponsor
The research leading to these results received funding from Korea Evaluation Institute of Industrial Technology (KEIT) under grant number 10080187.
Published In
Journal of Materials Science-Materials in Electronics
Document Type
Citation
Publication Date
1-6-2021
Abstract
This paper reports experimental observations showing that a current flow produces an effect of strengthening a solder joint against a shear load. This conclusion is found from a single-joint shear test conducted on Sn–1Ag–0.5Cu wt% (SAC 105) joints with in situ current stressing varied from 700 to 1400 A/cm2 at room temperature. To isolate the current effect from the Joule heat effect, the same type of tests were conducted at room temperature, 40, 50, and 80 °C, without current applied to the joint, thus mimicking the condition of steady-state temperature resulting from Joule heating. Comparative testing was also conducted after aging the samples at 150 °C for 200 h. These tests produced indications suggesting that the current flow causes the maximum shear load to increase, while the rise in temperature by the Joule heat effect results in the opposite effect. Experimentally, as much as a 9.5% increase in the maximum shear load was observed from the isothermally aged sample tested under a current density of 700 A/cm2, while an ~ 25% reduction was estimated to result from a temperature increase by Joule heating. The potential mechanism for these observations is discussed.
Rights
© 2021 Springer Nature Switzerland AG. Part of Springer Nature.
Locate the Document
DOI
10.1007/s10854-020-05038-3
Persistent Identifier
https://archives.pdx.edu/ds/psu/35190
Citation Details
Fuller, S., Sheikh, M., Baty, G., Kim, C.-U., & Lee, T.-K. (2021). Impact of in situ current stressing on Sn-based solder joint shear stability. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-020-05038-3