Performance Analysis of Perovskite Solar Cells Using Dft-Extracted Parameters of Metal-Doped Tio2 Electron Transport Layer

Published In

Journal of Physical Chemistry C

Document Type

Citation

Publication Date

6-24-2021

Abstract

The performance of perovskite solar cells (PSCs) depends heavily on the electronic and optical properties of the electron transport layer (ETL). Density functional theory (DFT) uses a quantum-mechanical approach to accurately predict the properties of different layers in PSCs, including the ETL. Titanium dioxide (TiO2) is a widely used material for the ETL in PSCs. In this work, we use first-principles calculations based on DFT to obtain the electronic and optical properties of pristine rutile TiO2 and TiO2 doped with tin (Sn) and zinc (Zn). DFT-extracted carrier mobility, band gap, and the absorption spectrum of TiO2 are used in the SCAPS-1D device simulator to evaluate the performance of the solar cell device, with respect to dopant concentration and thickness of TiO2. PSCs with 3.125 mol % Sn-doped TiO2 achieve a maximum power conversion efficiency (PCE) of 17.14 versus 13.70% with undoped TiO2. We have also compared the performance of PSCs with Sn-doped and Zn-doped TiO2. For the same dopant concentration, Sn-doped TiO2 offers 0.63% higher PCE than the Zn-doped counterpart. The results are in good agreement with reported experimental findings and provide a reliable means of evaluating PSC performance by combining first-principles (DFT) calculations with conventional device simulations.

Rights

Copyright (2021) ACS

DOI

10.1021/acs.jpcc.1c02302

Persistent Identifier

https://archives.pdx.edu/ds/psu/36084

Share

COinS