Published In

Microgravity

Document Type

Article

Publication Date

12-2021

Subjects

Fluid dynamics, Microfluidics, Capillarity, Reduced gravity environments, Contact angle

Abstract

When confined within containers or conduits, drops and bubbles migrate to regions of minimum energy by the combined effects of surface tension, surface wetting, system geometry, and initial conditions. Such capillary phenomena are exploited for passive phase separation operations in micro-fluidic devices on earth and macro-fluidic devices aboard spacecraft. Our study focuses on the migration and ejection of large inertial-capillary drops confined between tilted planar hydrophobic substrates (a.k.a., wedges). In our experiments, the brief nearly weightless environment of a 2.1 s drop tower allows for the study of such capillary dominated behavior for up to 10 mL water drops with migration velocities up to 12 cm/s. We control ejection velocities as a function of drop volume, substrate tilt angle, initial confinement, and fluid properties. We then demonstrate how such geometries may be employed as passive no-moving-parts droplet generators for very large drop dynamics investigations. The method is ideal for hand-held non-oscillatory ‘droplet’ generation in low-gravity environments.

Rights

Copyright (c) 2021 The Authors

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

DOI

10.1038/s41526-021-00182-4

Persistent Identifier

https://archives.pdx.edu/ds/psu/37108

Share

COinS