Sponsor
This work was supported by the National Science Foundation grant number IIS160811 and NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program.
Published In
Biomimetics
Document Type
Article
Publication Date
1-20-2022
Subjects
Animal Locomotion, Joint Torque
Abstract
Animal locomotion is influenced by a combination of constituent joint torques (e.g., due to limb inertia and passive viscoelasticity), which determine the necessary muscular response to move the limb. Across animal size-scales, the relative contributions of these constituent joint torques affect the muscular response in different ways. We used a multi-muscle biomechanical model to analyze how passive torque components change due to an animal’s size-scale during locomotion. By changing the size-scale of the model, we characterized emergent muscular responses at the hip as a result of the changing constituent torque profile. Specifically, we found that activation phases between extensor and flexor torques to be opposite between small and large sizes for the same kinematic motion. These results suggest general principles of how animal size affects neural control strategies. Our modeled torque profiles show a strong agreement with documented hindlimb torque during locomotion and can provide insights into the neural organization and muscle activation behavior of animals whose motion has not been extensively documented.
Rights
Copyright (c) 2022 The Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Locate the Document
DOI
10.3390/biomimetics7010017
Persistent Identifier
https://archives.pdx.edu/ds/psu/37166
Citation Details
Young, F. R., Chiel, H. J., Tresch, M. C., Heckman, C. J., Hunt, A. J., & Quinn, R. D. (2022). Analyzing Modeled Torque Profiles to Understand Scale-Dependent Active Muscle Responses in the Hip Joint. Biomimetics, 7(1), 17.