Sponsor
This research has been supported by the Alliance for Sustainable Energy, LLC, for the US Department of Energy (DOE) under contract no. DE-AC36-08GO28308. Funding was provided by the Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office.
Published In
Wind Energy Science Discussions
Document Type
Article
Publication Date
3-30-2023
Subjects
Kinetic energy, Wind turbines, Atmospheric models, Boundary layer control
Abstract
The eddy viscosity hypothesis is a popular method in wind turbine wake modeling for estimating turbulent Reynolds stresses. We document the downstream evolution of eddy viscosity in the wake of a wind turbine from experimental and large-eddy-simulation data.Wake eddy viscosity is isolated from its surroundings by subtracting the inflow profile, and the driving forces are identified in each wake region. Eddy viscosity varies in response to changes in turbine geometry and nacelle misalignment with larger turbines generating stronger velocity gradients and shear stresses. We propose a model for eddy viscosity based on a Rayleigh distribution. Model parameters are obtained from scaling the eddy viscosity hypothesis and demonstrate satisfactory agreement with the reference data. The model is implemented in the curled wake formulation in the FLOw Redirection and Induction in Steady State (FLORIS) framework and assessed through comparisons with the previous formulation. Our approach produced more accurate flow field estimates with lower total error for the majority of cases.
Rights
Copyright (c) 2023 The Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Locate the Document
DOI
10.5194/wes-8-449-2023
Persistent Identifier
https://archives.pdx.edu/ds/psu/39706
Citation Details
Scott, R., Martínez-Tossas, L., Hamilton, N., & Cal, R. B. (2022). Evolution of Eddy Viscosity in the Wake of a Wind Turbine. Wind Energy Science Discussions, 1-22.