Sponsor
We acknowledge the technical expertise and the help of V. Dolique for the use of the Scanning Electron Microscope. This work was supported by the French research program IDEX-LYON of the University of Lyon in the framework of the French program “Programme Investissements d’Avenir” (Grant No. hlR-16-IDEX-0005).
Published In
International Journal of Multiphase Flow
Document Type
Pre-Print
Publication Date
1-2024
Subjects
Individual spheres -- dynamics
Abstract
The settling behavior of individual spheres in a quiescent fluid was studied experimentally. The dynamics of the spheres was analyzed in the parameter space of particle-to-fluid density ratio (Γ) and Galileo number (Ga), with Γ ∈ (1.1,7.9) and Ga ∈ (100,340). The experimental results showed for the first time that the mean trajectory angle with the vertical exhibits a complex behavior as Ga and Γ are varied. Numerically predicted regimes such as Vertical Periodic for low Γ values, and Planar Rotating for high Γ values were validated. In particular, for the denser spheres, a clear transition from planar to non-planar trajectories was observed, accompanied by the emergence of semi-helical trajectories corresponding to the Planar Rotating Regime. The spectra of trajectory oscillations were also quantified as a function of Ga, confirming the existence of oblique oscillating regimes at both low and high frequencies. The amplitudes of the perpendicular velocities in these regimes were also quantified and compared with numerical simulations in the literature. The terminal velocity and drag of the spheres were found to depend on the particle-to-fluid density ratio, and correlations between the drag coefficient and particle Reynolds number (Rep) as a function of Ga were established, allowing for the estimation of drag and settling velocity using Ga, a control parameter, rather than the response parameter Rep.
Rights
© Copyright the author(s) 2024
Locate the Document
DOI
10.1016/j.ijmultiphaseflow.2023.104664
Persistent Identifier
https://archives.pdx.edu/ds/psu/41044
Citation Details
Published as: Cabrera-Booman, F., Plihon, N., & Bourgoin, M. (2024). Path instabilities and drag in the settling of single spheres. International Journal of Multiphase Flow, 171, 104664.
Description
This is the author’s version of a work that was accepted for publication in International Journal of Multiphase Flow. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Multiphase Flow.