Thermal Footprint Effect of Rooftop Urban Cooling Strategies

Published In

Urban Climate

Document Type

Citation

Publication Date

12-2015

Subjects

Urban climatology -- Research -- United States, Urban heat islands

Abstract

Simulation results indicate that urban morphology plays an important role in determining the efficacy of rooftop urban cooling strategies for improving pedestrian thermal comfort. Results suggest that a white roof has the greatest effect on near-surface air temperatures within the urban canyon when used on buildings of 1–2 stories height and almost no near-surface effect when applied to 4 story buildings. However, the near-surface effect is more substantial when complex urban morphology introduces enhanced vertical mixing. Of the cases studied the largest near-surface cooling benefit of implementing white roofs was found for the case when a taller building existed downwind from a building with a white roof. Using the Thermal Footprint Ratio it was found that by placing a tall building behind a building with a white roof in an otherwise uniform array of 2 story buildings, the cool roof would be twice as effective at reducing air temperatures at the pedestrian level. Calculations of the volumetric heat removal confirmed this result, indicating that the positioning of the tall building downwind of the modified roof would be 2.6 times as effective at cooling the pedestrian level air volume as compared to the case where all buildings were a uniform height.

Description

Copyright (2015) Elsevier

Locate the Document

PSU affiliates use Find in PSU library link at top.

Unaffiliated researchers can access the work here: http://dx.doi.org/10.1016/j.uclim.2015.07.005

DOI

10.1016/j.uclim.2015.07.005

Persistent Identifier

http://archives.pdx.edu/ds/psu/20932

Share

COinS