Microstructures and Stabilization Mechanisms of Nanocrystalline Iron-Chromium Alloys with Hafnium Addition

Published In

Metallurgical and Materials Transactions A

Document Type

Citation

Publication Date

12-2015

Subjects

Microstructural science, Nanocrystals--Research

Abstract

The low thermal stability of nanocrystalline metals severely limits their applications at high temperatures. In this study, we investigate the nanocrystalline stabilization mechanisms for Fe-14Cr alloys with 1, 2, and 4 at. pct Hf addition at 1173 K (900 °C). Microstructural characterizations using aberration-corrected scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy reveal high density of HfO2 nanoparticles with sizes of ~4 nm dispersed throughout the ferritic matrix. This indicates that kinetic stabilization by HfO2 nanoparticle pinning is primarily responsible for the observed high thermal stability. In addition, some Hf and Cr segregation on grain boundaries is observed in the Fe-14Cr-4Hf, suggesting the existence of thermodynamic stabilization at high Hf content. Second-phase precipitations such as hafnium carbide, M23C6, and Fe-Cr-Hf intermetallic phase are also found in the Fe-14Cr-4Hf, but their large sizes and inter-spacing suggest that their contribution to stabilization is minimal.

Rights

Copyright The Minerals, Metals & Materials Society and ASM International 2015

DOI

10.1007/s11661-015-2985-2

Persistent Identifier

http://archives.pdx.edu/ds/psu/20934

Share

COinS